Rapid Deformable Object Detection using Dual-Tree Branch-and-Bound

نویسنده

  • Iasonas Kokkinos
چکیده

In this work we use Branch-and-Bound (BB) to efficiently detect objects with deformable part models. Instead of evaluating the classifier score exhaustively over image locations and scales, we use BB to focus on promising image locations. The core problem is to compute bounds that accommodate part deformations; for this we adapt the Dual Trees data structure [7] to our problem. We evaluate our approach using Mixture-of-Deformable Part Models [4]. We obtain exactly the same results but are 10-20 times faster on average. We also develop a multiple-object detection variation of the system, where hypotheses for 20 categories are inserted in a common priority queue. For the problem of finding the strongest category in an image this results in a 100-fold speedup.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounding Part Scores for Rapid Detection with Deformable Part Models

Computing part scores is the main computational bottleneck in object detection with Deformable Part Models. In this work we introduce an efficient method to obtain bounds on part scores, which we then integrate with deformable model detection. As in [1] we rapidly approximate the inner product between a weight vector and HOG-based features by quantizing the HOG cells onto a codebook and replace...

متن کامل

Rapid Deformable Object Detection using Bounding-based Techniques

In this work we use bounding-based techniques, such as Branch-and-Bound (BB) and Cascaded Detection (CD) to efficiently detect objects with Deformable Part Models (DPMs). Instead of evaluating the classifier score exhaustively over all image locations and scales, we use bounding to focus on promising image locations. The core problem is to compute bounds that accommodate part deformations; for ...

متن کامل

Rapid Mode Estimation for 3D Brain MRI Tumor Segmentation

In this work we develop a method for the efficient automated segmentation of brain tumors by developing a rapid initialization method. Brain tumor segmentation is crucial for brain tumor resection planning, and a high-quality initialization may have a significant impact on segmentation quality. The main contribution of our work is an efficient method to initialize the segmentation by casting it...

متن کامل

Neural Network Modelling of Optimal Robot Movement Using Branch and Bound Tree

In this paper a discrete competitive neural network is introduced to calculate the optimal robot arm movements for processing a considered commitment of tasks, using the branch and bound methodology. A special method based on the branch and bound methodology, modified with a travelling path for adapting in the neural network, is introduced. The main neural network of the system consists of diff...

متن کامل

Object Recognition in Multi-View Dual Energy X-ray Images

Object recognition in X-ray images is an interesting application of machine vision that can help reduce the workload of human operators of X-ray scanners at security checkpoints. However, automatic inspection systems using machine vision techniques are not yet commonplace for generic threat detection in X-ray images. Moreover, this problem has not been well explored by machine vision community ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011